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Abstract

In emission tomography, images can be reconstructed from a set of measured projections
using a maximum likelihood (ML) criterion. In this paper, we present a primal-dual algorithm
for large-scale three-dimensional image reconstruction. The primal-dual method is specialized
to the ML reconstruction problem. The reconstruction problem is extremely large; in several of
our data sets the Hessian of the objective function is the product of a 1.4 million by 63 million
matrix and its scaled transpose. As such, we only consider approaches that are suitable for large-
scale parallel computation. We apply a stabilization technique to the system of equations for
computing the primal direction and demonstrate the need for stabilization when approximately
solving the system using an early-terminated conjugate gradient iteration.

We demonstrate that the primal-dual method for this problem converges faster than the log-
arithmic barrier method and considerably faster than the expectation maximization algorithm.
The use of extrapolation in conjunction with the primal-dual method further reduces the overall
computation required to achieve convergence.
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tions of nonlinear programming, primal-dual methods
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1 Introduction

In this paper we consider the image reconstruction problem in emission tomography. This problem
is encountered in the field of nuclear medicine, which is concerned with the study of organ function
through radioactively labeled “tracer” compounds. The quantity of interest in this problem is the
spatial concentration of radioactive emissions within the object under study. The quality of the
reconstructed image can depend upon a number of factors including the number of emission events
(i.e., counts) collected by the scanner and the method used to reconstruct the image. In studies
that are characterized by poor counting statistics (that is, few counts), statistical reconstruction
methods that model the Poisson nature of the emission process have been shown to improve image
quality over traditional, non-statistical reconstruction methods [31, 51]. The low-count problem has
generated considerable interest in the medical imaging community because low radiotracer doses
and short scanning durations are highly desirable.
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The estimation of emission density in an organ is an inherently three-dimensional (3-D) process.
Volume, or 3-D acquisition improves the counting statistics compared with 2-D acquisition (in
which axially oblique coincidences are either physically or electronically blocked from detection) but
increases the problem size considerably. Since the 3-D problem may involve image and measurement
vectors with millions of elements, the amount of computation required to perform 3-D statistical
reconstructions can be quite substantial. In our computational studies for example, the larger
reconstructions consist of 1.4 million image variables which are reconstructed from a measurement
vector with 63 million elements. As such, it is important to use reconstruction methods that
converge rapidly. The statistical image reconstruction problem can be posed as a constrained
nonlinear optimization problem. In this paper we present a primal-dual method for performing
statistical 3-D reconstructions in emission tomography that has been specialized to the intricacies of
the application. We demonstrate the rapid convergence of our primal-dual method in computational
studies on low-count, 3-D positron emission tomography (PET) data.

This paper is organized as follows. In Section 2 we present the statistical model and develop
the objective function. Section 3 reviews the EM method for ML reconstruction. In Section 4
we develop a primal-dual method for ML reconstruction and discuss initialization, stabilization,
and extrapolation enhancements. Computational tests comparing the primal-dual results to a
logarithmic barrier approach and the EM method on small animal data are presented in Section 5.
Some concluding remarks are made in Section 6.

2 Statistical model and objective function

We begin our discussion by forming a finite parameter space for the image estimates, as is customary
[19]. Consider the situation depicted in Figure 1 where a grid of boxes or voxels has been imposed
over the emitting object (for simplicity, the Figure is depicted in 2-D; the concept is readily extended
to 3-D). Given a set of measurements along lines of coincidence, we seek to estimate xi = E {ξi} i =
1, . . . n, the expected number of counts emitted from voxel i. The number of radioactive events
emitted from voxel i is assumed to be a Poisson-distributed random variable with mean xi [47]. A
system matrix C ∈ <n×N is used to model a number of physical effects including spatially dependent
resolution and attenuation. The elements Ci,j of the system matrix represent the probability
that an event emitted from voxel i will be detected by detector pair (coincidence line) j. By
a Bernoulli thinning process with probability Ci,j , the number of events emitted from voxel i
and detected at coincidence line j, Ξi,j = ξiCi,j is also an independent Poisson variable. The
measurements yj are thus realizations of sums of independent Poisson variables yj =

∑
i Ξi,j

with means ŷj = E {yj} =
∑

i Ci,jxi. The above is a considerably simplified model of the actual
measurement process; for further discussion on its validity to the present situation, see [23].

Given our simplified Poisson model, the likelihood may be written as

P {y|x} =
∏
j

e−ŷj ŷ
yj

j

yj !
=
∏
j

e−
∑

i
Ci,jxi (

∑
i Ci,jxi)

yj

yj !
.

The ML objective function is formed by taking the log likelihood

fML (x) = log P {y|x} =
∑
j

(
−
∑

i

Ci,jxi + yj log
∑

i

Ci,jxi − log (yj)!

)
,

or (ignoring the constant term),

fML (x) =
∑
j

(
−
(
CT x

)
j
+ yj log

(
CT x

)
j

)
= −qT x +

∑
j

yj log
(
CT x

)
j
, (1)
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Figure 1: Relationship between estimate xi and measurement yj . Shown here is the case of PET,
where emission-count measurements are taken along coincidence lines from pairs of detectors. A
finite parameter space is formed by imposing a grid of voxels over the emitting region. The estimate
of the expected emission intensity within voxel i is xi.

where q = CeN ∈ <n and eN ∈ <N is a vector of 1’s, so that q is the sum of the columns of C
(which need not necessarily be 1). Defining

ŷ = CT x

to be a forward transformation, we can write the gradient and Hessian of the objective function,
respectively, as

∇fML (x) = −q + C Ŷ −1y, (2)
∇2fML (x) = −C Y Ŷ −2CT , (3)

where Y = diag (yj , j = 1, . . . , N) and Ŷ = diag (ŷj , j = 1, . . . , N) . The Hessian is known to
be negative semidefinite for this problem (since yj/ŷj ≥ 0 ∀j) and the objective function (1) is
concave. Thus, any local maximum will also be a global maximum.

Equation (2) sheds some insight into the computational costs associated with maximizing the
objective function. Given a current solution estimate xk, computing the gradient requires first
computing a forward transformation ŷk = CT xk and then computing a backward transformation
CŶ −1

k y from the forward transformation. The costs of performing the forward transformation
and backward transformation are similar and together dominate the computation associated with
iterative reconstruction methods, especially in large scale. We shall revisit this computational
structure, which is common to all iterative reconstruction methods.

Since the underlying activity distribution is non-negative, the ML reconstruction problem is a
constrained optimization problem with lower-bound constraints:

maximize fML (x)
subject to x ≥ 0.

(4)

The ML objective function has a finite maximum and compact level sets on x ≥ 0 [32].
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2.1 Maximum a posteriori reconstruction

Without regularity conditions on x, estimating the spatial emission distribution is a statistically
ill-posed problem [6, 29]. The fully converged ML reconstruction, being dominated by noise and
edge artifact, is not generally of biomedical interest [49]. Regularization can be included in the
objective function by introducing a Bayesian formulation [19, 33]. Given prior probabilities P {x}
and P {y} for the image and measurements, respectively, we define the posterior probability

P {x|y} =
P {y|x} P {x}

P {y} .

The estimate of x is then obtained by maximizing the posterior probability P {x|y}.
A common choice for the image prior is the Gibbs distribution P {x} = e−γR(x), although other

priors (e.g., Gaussian, Gamma) have been investigated [33, 35]. The popularity of Gibbs priors
stems in part from their ability to capture the local correlation property of images [18]. The energy
function R is defined as a sum of neighborhood functions

R (x) =
1
2

∑
i

∑
l∈NV

Ii,l (xi, xl) .

where Ni denotes the neighborhood of voxel i. In order to maintain concavity and twice continuous
differentiability in the objective function, the potential function Vi,l is chosen to be convex with
continuous first and second derivatives. The potential function is generally designed to discourage
non-smoothness in a neighborhood. In our studies we have used the potential function Vi,l (xi, xl) =
V (xi − xl), where

V (z) = δ2
(∣∣∣∣zδ

∣∣∣∣− log
(

1 +
∣∣∣∣zδ
∣∣∣∣
))

(5)

and δ is a shaping constant that we typically set to 1.
For maximum a posteriori (MAP) reconstructions, the objective function (up to a constant) is

the log-posterior likelihood

fMAP (x) = log P {x|y} = fML (x) − γR (x) . (6)

The MAP reconstruction problem can also be posed as a constrained optimization problem

maximize fMAP (x)
subject to x ≥ 0.

(7)

We note for future reference the following:

∇fMAP (x) = ∇fML (x) − γ∇R (x) = −q + C Ŷ −1y − γ∇R (x) ,

∇2fMAP (x) = ∇2fML (x) − γ∇2R (x) = −C Y Ŷ −2CT − γ∇2R (x) .

When a Gibbs prior such as (5) is chosen, the only direction of non-positive curvature of R is uniform
field, which is a direction of positive curvature for fML, and therefore fMAP is strictly concave and
∇2fMAP (x) is negative definite [34]. The MAP objective function has a finite maximum and
bounded level sets on x ≥ 0 [33].
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3 The EM algorithm

The expectation maximization (EM) method, as presented by Dempster, Laird, and Rubin [7] for
ML estimation, is an iterative algorithm for computing ML estimates when the measurements are
viewed as incomplete data. Shepp and Vardi [47] and Lange and Carson [32] applied the EM
method to emission and transmission tomography problems, respectively. The EM algorithm has
been proven to converge to an optimal solution of (4) [32, 50].

The EM algorithm requires that a positive initial solution x0 > 0 be specified. Application of
the EM method to the unregularized ML reconstruction problem for emission tomography yields
the update equation

xk+1 = M
(
xk
)

= XkQ
−1C Ŷ −1

k y, (8)

where xk is the current image estimate, ŷk = CT xk, and Xk, Q, and Ŷk are diagnonal matrices
corresponding to the vectors xk, q, and ŷk respectively. The EM algorithm maintains non-negativity
at every iteration and converges to a fixed point x∞ = M (x∞) which is an optimal solution of
(4). The asymptotic rate of convergence is governed by the spectral radius of ∇M (x∞) which
is typically very close to unity. In one example using reasonable assumptions about the scanner
geometry, the lower bound of the spectral radius was calculated to be .99938 [16]. Indeed, EM
has been observed to converge very slowly, especially close to the optimal solution. The slow
convergence of the EM algorithm has limited its clinical applicability. The cost of one EM iteration
is equivalent to the cost of one gradient calculation.

In MAP-EM, the presence of the regularizing term in (6) precludes a closed-form update equa-
tion such as (8) for ML-EM. We mention two algorithms that are commonly used for MAP-EM
reconstructions: the “one step late” (OSL) algorithm and DePierro’s algorithm. Green’s OSL
algorithm approximates R (x) with the constant R

(
xk
)
, thereby permitting a closed-form approx-

imated update [15, 16]. OSL converges to the MAP solution provided that γ ≤ γ̄, where γ̄ is an
upper threshold for the prior strength. DePierro’s algorithm is a “true” MAP-EM implementa-
tion that substitutes the convex function R (x) with a separable, convex, and twice continuously
differentiable function R

(
x, xk

)
≥ R (x), so that separable maximizations can be performed on the

variables [8, 9]. Regularization improves the convergence rate of EM, with larger prior strengths
resulting in lower spectral radii. However, for reasonable prior strengths (mild to moderate smooth-
ing), the convergence rates of OSL and DePierro’s algorithm are still quite close to unity.

4 A primal-dual approach

The known slow convergence of the EM algorithm motivates our investigation into interior-point
approaches for the ML and MAP reconstruction problems. As is clear from (1), the objective
function can be undefined outside the feasible region x ≥ 0. Thus the ML and MAP reconstruc-
tion problems would appear to be “natural” candidates for interior-point algorithms. Primal-dual
methods have enjoyed considerable success in linear programming [17, 28, 36], and have recently
been proposed for nonlinear programming [4, 12, 37]. Although they are closely related to the
logarithmic barrier method, primal-dual methods may pose some advantages. In the logarithmic
barrier method, the Lagrange multiplier estimates may be inaccurate when the primal variables are
not close to the barrier trajectory [10]. Primal-dual methods offer the potential of improved “cen-
tering” over barrier methods. Given the size of the current problem, the developments presented
here must be suitable for large-scale parallel computation.
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For convenience of notation, let us repose the reconstruction problem as a constrained mini-
mization problem:

minimize f (x)
subject to x ≥ 0.

(9)

Because we are more interested in the fully converged MAP solution than that of ML, we shall
henceforth assume that f (x) = −fMAP (x), where γ > 0. The Karush-Kuhn-Tucker (KKT) first-
order necessary conditions for optimality of (9) at a point x∗ are existence of Lagrange multipliers
λ∗ so that

∇` (x∗, λ∗) = ∇f (x∗) − λ ∗ = 0, (10)
λ∗

i x
∗
i = 0, i = 1, . . . n, (11)

x∗, λ∗ ≥ 0, (12)

where ` (x, λ) = f (x) − λT x is the Lagrangian function. Due to the strict convexity of f , the
second-order sufficiency conditions are satisfied, and x∗ is the unique minimizer of f .

In a manner similar to classical barrier methods, primal-dual methods attempt to follow the
“barrier trajectory,” a smooth trajectory characterized by a barrier parameter µ > 0 [11]. The
points (x (µ) , λ (µ)) along the trajectory satisfy a perturbed version of the KKT conditions:

∇f (x (µ)) − λ (µ) = 0, (13)
λi (µ) xi (µ) = µ, i = 1, . . . , n, (14)
x (µ) , λ (µ) > 0. (15)

Defining X = diag {xi, i = 1, . . . , n} and Λ = diag {λi, i = 1, . . . , n}, our method maintains (15)
while attempting to solve (13), (14), that is[

∇f (x) − λ
ΛXen − µen

]
= 0. (16)

Given the point
(
xk, λk

)
and the barrier parameter µ = µk, the search direction p =

[
pT

x , pT
λ

]T
prescribed by Newton’s method satisfies the “unsymmetric” primal-dual equations [37]:[

∇2f
(
xk
)

−I

Λk Xk

] [
px

pλ

]
= −

[
∇f

(
xk
)

− λk

ΛkXken − µken

]
. (17)

Elimination of the (1,2) block of the matrix in (17) yields the reduced system

Mkpx = −∇f(xk) + µkX
−1
k en, (18)

pλ = −λk − X−1
k Λkpx + µkX

−1
k en. (19)

where the “condensed” primal-dual matrix is given by

Mk = ∇2f(xk) + X−1
k Λk. (20)

There is no guarantee from (18), (19) that a single steplength taken along the solution px, pλ

maintaining both x > 0 and λ > 0 will be bounded away from zero. We have implemented an
algorithm in which the primal and dual variables are permitted to take separate steplengths:[

xk+1

λk+1

]
=

[
xk + αxpx

λk + αλpλ

]
.
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The primal steplength αx is chosen to ensure sufficient decrease in the merit function

F (x, µ) = f (x) − µ
∑

i

log xi.

Observe that F (x, µ) is simply the logarithmic barrier function and that

∇xF (x, µ) = ∇f (x) − µX−1en

is identical to the right-hand side of (18) for µ = µk and x = xk. The unconstrained minimizer
x (µ) of F (x, µ) satisfies the perturbed KKT conditions (13)-(15) with corresponding multiplier
λi (µ) = µ/xi (µ) , i = 1, . . . , n. Furthermore, the solution of the condensed primal-dual Newton
equation (18) is guaranteed to be a descent direction of the merit function for µ > 0, since

(∇xF (x, µ))T px = pT
x Mpx,

and M is positive definite. We shall discuss in further detail the computation of the primal search
direction and step length.

The formula for the dual step length follows a suggestion by Conn, Gould, and Toint (CGT)
[4]. If λ(k) + pλ lies component-wise in the interval

λk + pλ ∈ (21)[
ζ−1 min

(
en, λk, µkX

−1
k+1en

)
,max

(
ζen, λk, ζµ−1

k en, ζµkX
−1
k+1en

)]

(where ζ is a constant parameter that we have set to 100) then λk+1 = λk + pλ; otherwise find
0 < αλ < 1 such that λk+1 = λk + αλpλ minimizes

‖Λk+1Xk+1en − µken‖∞ (22)

subject to λk+1 being in the interval (21). These conditions on the dual step might appear at first
glance to be overly restrictive but are actually designed to give maximum flexibility in the choice of
λk+1. CGT use these bounds on λ and nonsingularity of M to prove that, for any fixed parameter
value µ̄, the minimization of F (x, µ̄) must be successful, that is, eventually a solution is found that
satisfies the perturbed KKT conditions (13)-(15).

In general it is neither necessary nor desirable to reach full subproblem convergence. Rather,
we have implemented a “short-step” algorithm in which only one primal-dual step is usually needed
before adjusting µ. Setting the barrier parameter µ is an important consideration in primal-dual
algorithms, and has a strong influence on the convergence rate. A reduction in µk is performed
whenever the “µ-criticality” conditions [4, 48] are satisfied:

(
λk+1

)T
xk+1

n
≤ ϑCµk, (23)∥∥∥∇f

(
xk+1

)
− λk+1

∥∥∥∞ ≤ ϑDF µk, (24)

where ϑC and ϑDF are constant parameters. If the above conditions are satisfied, the barrier
parameter is reduced according to

µk+1 =

(
λk+1

)T
xk+1

nρ
, (25)
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where ρ is a constant parameter such that

ϑC

ρ
< 1. (26)

A consequence of (26) is that µk cannot increase. Furthermore, since the minimization of F (x, µ)
must be successful, a µ-critical solution (a weaker requirement) must eventually be found. Thus
it is impossible for µk to be non-decreasing. Using this argument, CGT prove that the algorithm
must converge to a KKT solution [4].

In practice we find that both the primal and dual direction vectors are well scaled, and that
αx and αλ are both typically close to 1. By far the most costly operations are computing the
primal direction px and updating the gradient ∇F (x), as we shall explore. In contrast, the costs
of the line search for the primal steplength, the computation of the dual search direction (19), and
the dual line search (21) are relatively insignificant. From empirical evidence in our computational
studies, we have found that a “short-step” algorithm with gradual reduction in µ achieves the fastest
convergence to the KKT conditions. Specifically, we define ϑC = 1.9, ρ = 2, and ϑDF = 100. These
parameter values enable the µ-critical conditions to be met after only one primal-dual step for most
subproblems.

4.1 Computing the primal direction

For large problems, factorizing the condensed primal-dual matrix M or even forming the Hessian
∇2f (x) would be prohibitive due to the size of the matrix (376,000×376,000 for even the smaller
reconstructions being considered in this paper) and the enormous amount of computation that
would be required. Thus we must consider methods for approximating the Newton direction in
(18). The approach we have successfully applied to this problem is motivated by the truncated-
Newton [5] method of unconstrained optimization. The search direction is an approximate or
truncated solution to the Newton equations [41, 43]

Mpx ≈ −∇F (x) . (27)

An early-terminated conjugate gradient (CG) iteration [20] is used to obtain an approximate solu-
tion to (27).

An equivalent statement of (27) is we seek to find the direction px that approximately minimizes
the quadratic Q (px) = 1

2pT
x Mpx + ∇F (x) px. A reasonable and effective truncation point for (27),

based on the monotonicity of Q (px), is proposed in [42]; the CG is terminated at subiteration l if

Q
(
pl

x

)
− Q

(
pl−1

x

)
Q (pl

x)
≤ 1

2l
. (28)

The CG termination rule (28) has been an important component of the reconstruction software in
that it consistently yields a well-scaled primal direction vector as long as µ ≥ µs, where µs is a
threshold value below which stabilization is required (we shall discuss the µ < µs case in Section
4.2).

The CG method does not require storage of the Hessian or condensed primal-dual matrix, but
rather only application of matrix-vector products. From (3) we can write the first term of the
matrix-vector product

∇2fML (x) v = −C Y Ŷ −2CT v (29)
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for an arbitrary vector v ∈ <n. Computationally, (29) consists of a forward transformation (CT v)
followed by a diagonal scaling (ŷ is already available from the computation of ∇f (x)), followed by
a backward transformation (premultiplication by C). To be explicit, recalling (20), we have

Mv = C Y Ŷ −2CT v + γ∇2R (x) v + X−1Λv,

where ∇2R (x) v can be computed exactly without incurring significant computational expense.
The forward-and-back-transformation operation in (29) dominates the computational cost of a CG
iteration. This operation is computationally similar to computing the gradient, or one EM iteration.

Some authors advocate solving simultaneously for px and pλ, using the full unsymmetric primal-
dual equations (17), or an equivalent symmetrized system [12, 13, 46, 55]. The unsymmetric primal-
dual matrix in particular remains nonsingular, and its condition number remains bounded as µ → 0
[11, 37], when the standard conditions of a constraint qualification, strict complementarity, and
the second-order sufficient conditions are satisfied at the solution. Solving the symmetrized system
requires significantly more computation (2n variables rather than n) without avoiding the potential
for ill-conditioning. In our application the Hessian is so large that this is not practical, since we
must use inexact solutions. The advantage of using the condensed system (18)–(19) is that although
the primal search direction is computed inexactly, the equation for maintaining complementarity
(19) is maintained. In practice we find that the resulting primal and dual direction vectors are
both well scaled, and that αx and αλ are typically close to 1.

4.1.1 Preconditioning

The use of a preconditioner with the CG is essential for a competitive algorithm. Since every
CG subiteration is as costly as a gradient evaluation or EM iteration, it is highly desirable to
obtain a quality direction vector in as few CG iterations per subproblem as possible. We have
investigated a number of preconditioners, including FFT-based preconditioners that model the ap-
proximately Toeplitz-block-Toeplitz nature of CCT with a circulant-block-circulant approximation
[1, 2], high-pass filter approximations to the FFT-based preconditioner [3], the EM preconditioner
XQ−1 [30], the exact diagonal of M , and diagonal Hessian approximations [40]. As a result of the
spatially-variant dependence of M on y, ŷ, x, and λ, shift-invariant Toeplitz models of M are highly
inappropriate. Of the above preconditioners, by far the best-performing was the exact diagonal of
M , which can be computed at reasonable cost:

Mi,i =
∑
j

C2
i,jyj

ŷ2
j

+ γ
∂2

∂x2
i

R (x) +
λi

xi
. (30)

Note that the first right-hand side term in (30) is similar in form to a backward transformation,
although a bit more expensive due to the squaring operations. We have found that the precon-
ditioned CG method using an exact diagonal preconditioner in the form of (30) almost always
requires using fewer than 10 iterations to achieve (28), regardless of the size of the problem. In
many cases, only 3 or 4 CG iterations are required. Moreover, the directions produced using an
exact diagonal preconditioner are well scaled (usually resulting in primal step sizes of near 1), and
lead to rapid descent.

4.1.2 Line search

For ML and MAP reconstructions, knowledge of the structure of the objective function can lead
to a substantial reduction in the cost of implementing a line search over a more naive approach.
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Specifically, after the search direction px has been found, and once a forward transformation ŵ =
CT px ∈ <N has been computed, it is possible to compute the objective function and first and
second directional derivative values at the trial points

(
xk + αpx

)
at nearly negligible cost. To see

this, note that ŷk+1 = ŷk + αŵ, and therefore [26, 27]

f
(
xk + αxpx

)
= qT xk + αxqT px −

∑
j

yj log
(
ŷk

j + αxŵj

)
+ γR

(
xk + αxpx

)
.

Similar expressions exist for the directional first and second derivatives [23].
After the initial forward transformation to compute ŵ, no further forward- or back-transformation

operations are required during the line search at any of the trial points. The forward transformation
ŵ can be re-used, so that only one backward transformation is subsequently required to update
the gradient. The above observations and the well behaved convex nature of the objective function
have permitted us to implement a highly accurate but low-cost Newton line search. Due to the
low cost of each step we have chosen a relatively strict tolerance of 0.05 on the Wolfe condition for
termination of the line search. We find this line search technique to be highly effective and, in no
small part, responsible for the positive results we report.

4.2 Stabilization

A well known property of the Hessian of the primal barrier function is its increasingly ill-conditioned
nature as µ → 0 [39]. Analogous results hold for the condensed primal-dual matrix: as the solution
is approached the matrix becomes increasingly ill-conditioned. (For a detailed analysis see the
paper by Wright [54]).

In [44], Nash and Sofer developed an approximation to the Newton direction for the logarithmic
barrier, that avoids the structural ill-conditioning of the barrier Hessian and is suitable for large-
scale problems. The direction is the sum of two vectors, one in the null space of the Jacobian of
the active constraints, and the other orthogonal to it. The associated decoupling is based on a
prediction of the binding set at the solution.

We have recently adapted this approximation to the condensed Newton equations arising in
primal-dual methods. Although our derivation is valid for general nonlinear constraints, we present
it here for the special case of bound constraints in the context of (18).

We will assume in the following that strict complementarity holds at the solution, that is, λ∗
i > 0

if x∗
i > 0. Define J = {i : x∗

i = 0} to be the index set of binding constraints at the solution, and n̂ to
be the number of binding constraints at the solution. We will assume that 0 < n̂ < n, as is always
the case in reconstructions of practical interest. Define I = {i : x∗

i > 0} the set of nonbinding
constraints. Let xI be the subvector of variables that are positive at the optimal solution, and xJ

the subvector of variables that are zero at the optimal solution. Assume also that the variables are
ordered so that the positive variables are first, i.e.,

x =

[
xI

xJ

]
,

The Hessian of the objective function H = ∇2f (x) will then be similarly partitioned, as will the
condensed primal-dual matrix

M =

[
MI,I MI,J
MT

I,J MJ ,J

]
=

[
HI,I + X−1

I ΛI HI,J
HT

I,J HJ ,J + X−1
J ΛJ

]
,

where XI , XJ , ΛI and ΛJ are the diagonal matrices of the associated components of x and λ.
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We will assume that the sequence of iterates (x, λ) generated by the primal-dual satisfies the
following properties, when µ is sufficently small:

xi = Θ(1), λi = Θ(µ), i ∈ I,
xi = Θ(µ), λi = Θ(1), i ∈ J .

Here we define τ = Θ(µ) if there exist constants 0 < κl < κu so that κlµ ≤ ‖τ‖ ≤ κuµ for all
sufficiently small µ > 0. We say that a vector or matrix is Θ(µ) if its norm is Θ(µ). We also define
τ = O(µ) if there exists some positive constant κu so that ‖τ‖ ≤ κuµ for all sufficiently small µ > 0.

We will also assume that near the solution the Hessian is reasonably well conditioned, so that
H = O(1). Now the diagonal terms of MJ ,J are O(1/µ), and become unbounded as µ → 0. In
contrast, the diagonal terms of MI,I differ from those of the reduced Hessian HI,I by O(µ), and the
condition of MI,I thus reflects that of the constrained problem. The condensed primal-dual matrix
M can then be shown to have n̂ “large” eigenvalues of magnitude Θ(1/µ), and n − n̂ “small”
eigenvalues that differ from those of HI,I by O(µ), and have magnitude Θ(1). The condensed
primal-dual matrix thus suffers from the same structured ill-conditioning as the barrier Hessian.

For small values of µ we propose approximating the primal Newton direction px, by a direction
p̃x, whose null- and range-space components are computed as follows:

(MI,I) p̃I
x = −

(
∇F I − MI,J XJ Λ−1

J ∇FJ ) , (31)

p̃J
x = −XJ Λ−1

J ∇FJ . (32)

The system for computing the component p̃I
x involves the well conditioned matrix MI,I , and can

be solved exactly or inexactly via the conjugate gradient method. The computation of p̃J
x is

straightforward. Thus, the ill-conditioning of the condensed primal-dual is avoided. We will show
now that under the assumptions above, p̃x −px = O(µ2), so that the accuracy of the approximation
increases as the solution is approached and the potential harm from ill-conditioning increases.

Using the well known formula for the inverse of a partioned matrix (see e.g. [45, 55]) it follows
that

p̃I
x − pI

x = (MI,I)−1
(
MI,J G−1MT

I,J M−1
I,I∇F I + MI,J (XJ Λ−1

J − G−1)∇FJ ) ,

p̃J
x − pJ

x = −G−1MT
I,J M−1

I,I∇F I − (XJ Λ−1
J − G−1)∇FJ ,

where
G = MJ ,J − MT

I,J M−1
I,IMI,J .

Now since MJ ,J = X−1
J ΛJ + HJ ,J ,

G = X−1
J ΛJ

(
I + Λ−1

J XJ O(1)
)

= X−1
J ΛJ (I + O(µ)) ,

so that G−1 = O(µ) and
G−1 − XJ Λ−1

J = O(µ2).

Note further, that
∇F I = (∇f(x))I − µX−1

I e = O(µ) + µO(1) = O(µ),

whereas
∇FJ = (∇f(x))J − µX−1

J e = O(1) + µO(1/µ) = O(1).

It follows that
p̃I

x − pI
x = O(µ)O(µ) + O(µ2) = O(µ2),
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Table 1: An example of the effect of stabilization. The number of CG iterations, ncg, is counted
from the beginning of the µ = 1.40 × 10−4 subproblem. The termination condition in this example
is λT x/n ≤ 7.5 × 10−5.

non-stabilized stabilized
µ αx αλ ncg µ αx αλ ncg

1.49E-4 0.950 0.003 5 1.49E-4 0.942 1.000 12
1.26E-4 0.156 1.000 17 1.16E-4 0.923 1.000 17
1.01E-4 1.000 0.002 22 7.75E-5 0.159 0.8245 30
8.50E-5 0.143 1.000 34 6.47E-5 0.962 1.000 35
7.08E-5 0.392 1.000 46 3.25E-5
5.83E-5 1.000 0.166 51
4.77E-5 0.016 1.000 62
3.75E-5

and
p̃J

x − pJ
x = O(µ)O(µ) + O(µ2) = O(µ2),

so that p̃x − px = O(µ2).
In [44], Nash and Sofer prove (for the case of the Newton direction arising from the logarithmic

barrier objective function) that, for sufficiently small µ, the vector computed using an approxi-
mation similar to (31) and (32) yields a descent direction with respect to the logarithmic barrier
objective function. The proof is readily extended to the present primal-dual case; thus px is a
descent direction for the merit function F (x, µ). We have found that, for the present problem, the
above approximation to the Newton direction is useful for values of µ of order 10−4 or less.

Recently [54] showed that the errors generated by backward-stable numerical methods (vari-
ous Cholesky factorizations and Gaussian elimination with partial pivoting) for solving (18) are
not magnified by the structured ill-conditioning. These methods are inappropriate for our large
problems which involve potentially millions of variables. Instead we find an approximate solution
using a CG iteration. When working in inexact arithmetic with large numbers of variables, the
convergence rate of the CG method depends on the condition of M [14]. Thus the structural ill-
conditioning in M can lead the CG iteration to spend an unnecessary amount of work in computing
px. Further, as we have observed, the criterion for terminating the CG may be overly optimistic in
an ill-conditioned system, so that the resulting direction is poorly scaled as µ → 0.

The potential effect of ill-conditioning is illustrated through an example in Table 1. This
example was encountered during development and motivated the incorporation of stabilization into
the algorithm. Starting at the subproblem µ = 1.49×10−4, the primal steplength, dual steplength,
and ncg (the number of CG iterations), are listed for both the non-stabilized and stabilized cases.
This test was terminated at λT x/n ≤ 7.5 × 10−5. Note that in the non-stabilized case, the number
of CG iterations from the first subproblem in the test to termination is significantly lower in
the stabilized test than the non-stabilized test. Note also that in many of the non-stabilized
subproblems, either the primal or dual steplength is small, indicating a poorly scaled direction or
loss of accuracy.

There has been much recent interest in stabilization methods that do not require a prediction of
the active set [12, 13, 53]. These approaches are based on factorization methods which are unsuitable
for a problem as large as the present one. The argument against stabilization methods that require
a prediction set is that the active set is unknown in interior-point methods. We argue that, close
to the solution in the emission tomography reconstruction problem, an accurate prediction of the
active set can be made. In our problem, the constraints have a simple interpretation. The positive
variables correspond to those voxels containing at least some radioactive tracer, while the zero-

12



valued variables correspond to those voxels that lack any tracer activity. Close to the solution,
when µ becomes sufficiently small that stabilization is appropriate, the set of binding constraints
is obvious and can be conservatively identified with a µ-dependent threshold.

4.3 Extrapolation

Fiacco and McCormick showed that the solutions x (µ) at the perturbed KKT solutions form
a unique differentiable trajectory in µ [11]. The perturbed KKT conditions (13)–(15) define a
“central path” as µ → 0. Thus, a successful algorithm may be able to move both “along” and
“toward” the path. As discussed in [11], from the subproblem solutions {x (µl) , l = 1 . . . k} the
trajectory can be approximated as a polynomial

x (µ) '
k∑

l=k−r

clµ
l, (33)

where r is the degree of the approximating polynomial and ck−r, . . . , ck are r + 1 vectors of coeffi-
cients. Using the approximation in (33), we find a direction ∆x such that

∆x =
k∑

l=k−r

clµ
l − xk,

and set
x̂ (µk+1) = xk + ᾱ ∆x (34)

to be a prediction to the next subproblem’s primal solution. Here xk is the computed (approximate)
subproblem solution for µ = µk. Primal feasibility is maintained by the steplength ᾱ = 0.98αmax,
where αmax is the maximum steplength that does not violate non-negativity in x. Then, in the
manner of (19), we compute a dual direction vector according to

∆λ = −λk − X−1
k Λk (ᾱ4x) + µX−1

k en. (35)

The dual vector is then moved according to

λ̂ (µk+1) = λk + α̃λ4x, (36)

which requires another dual line search to minimize (22). The predicted solution
(
x̂ (µk+1) , λ̂ (µk+1)

)
then serves as a starting point for the (k + 1)st subproblem, a prediction to the solution at µk+1.
The extrapolated primal-dual method can be viewed as a predictor-corrector algorithm, with the
extrapolation (34 and 36) serving as the “predictor” step, and the subproblem minimization serving
as the centering or “corrector” step [22]. The degree r of the approximating polynomial is 1 when
predicting the 3rd subproblem, 2 for the 4th, and 3 for the 5th and beyond.

We have experimented with line searches in conjunction with (34), but often ᾱ � 1, and hence
the line search just yields ᾱ. For this reason, we have found that (36) yields a more effective
dual direction than does the equivalent of (19) in the context of extrapolation. Although the
extrapolated search direction ∆x can often be poorly scaled (i.e., ᾱ � 1), we have observed that
the directions produced are always descent directions to the merit function and lead to a significant
decrease in the objective function f . A number of reconstructions were performed in which ∆λ
was computed by extrapolating the dual solution vector (rather than computing it via (36)); the
discouraging nature of the results led us to abandon direct extrapolation of the dual vector in favor
of (36) which is highly effective in comparison.
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Following extrapolation, an additional gradient evaluation ∇F (x̂ (µk+1) , µk+1) is required.
Since the primal-dual algorithm requires between 12 and 25 subproblems to perform a 3-D MAP
reconstruction, extrapolation adds that many gradient evaluation operations to the computational
cost. So extrapolation is only economical if it reduces the computational burden by at least as
much as it adds. Our experience has been that for some data sets, the cost of extrapolation is well
worthwhile but for other data sets the benefits were only marginal. Extrapolation thus appears to
serve as somewhat of a safeguard against difficult problems. In an extrapolated primal-dual recon-
struction, the convergence measure max (λixi) does not decrease as monotonically as in a primal
dual reconstruction without extrapolation. Certain extrapolated steps seem to cause the algorithm
to “get ahead of itself,” but this effect is transient. On the studies we’ve performed, the algorithm
does ultimately converge to an accurate solution with extrapolation.

4.4 Initialization

The choice of the initial barrier parameter may have a substantial effect on the algorithm. If the
parameter is too small, the first subproblem may have extreme difficulty due to ill conditioning;
if the parameter is too large, then many (unnecessary) subproblems will be required to solve the
problem. Proper initialization of the barrier parameter µ involves finding the most suitable point
on the barrier trajectory based on the initial solution xo and the measurement data y. Recalling
the perturbed necessary conditions in (13), if the initial solution x̂0were to be on the central path,
it would satisfy

∇F
(
x̂0, µ0

)
= q − CŶ −1y + γ∇R

(
x̂0
)

− µ0X̂
−1
0 en = 0.

Pre-multiplying by
(
x̂0)T we arrive at

qT x̂0 − yT eN + γ∇T R
(
x̂0
)

x̂0 = nµ0.

This suggests the following rule for initialization, which we find quite effective:

µ0 =

∣∣∣qT x̂0 − yT eN + γ∇T R
(
x̂0) x̂0

∣∣∣
n

. (37)

Another, similar, initialization rule is motivated by the goal of finding an initial value µ0 so
that

∇f
(
x̂0
)

− µ0X̂
−1
0 en ≈ 0. (38)

While (38) cannot be solved exactly, we can try to find a µ0 that results in a point x̂0 that is close
to the barrier trajectory according to, say, the 2-norm. This motivation leads to an alternative
initialization rule [45]

µ0 =
∥∥∇f

(
x̂0)∥∥

2∥∥∥X̂−1
0 en

∥∥∥
2

. (39)

During the course of development, both initialization rules were tried on certain data sets. Although
both initialization rules performed well, reconstructions initialized with (37) usually reached the
optimal solution in slightly less overall work than those initialized with (39).

The initial estimate for x̂0 and λ̂0 we used most frequently was in each case a positive uniform
field. A discussion on the rationale of using a uniform field for x̂0 and on criteria for choosing the
constant value of the primal initial solution may be found in [23]. Alternative choices for the initial
dual vector may be preferable, and an investigation into this question may be worthwhile.
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Table 2: Properties affecting computation, memory, and storage costs for two different-sized re-
construction problems. Gradient evaluation costs are based on a 2.5M-count study on 10 120-MHz
IBM RISC/6000 SP processors.

size class n N elements density storage cost of
in C in C cost of C gradient

thick-slice 376,882 5.36 × 106 2.02 × 1012 0.93% 390 MB 3.42 min.
thin-slice 1.40 × 106 6.30 × 107 8.82 × 1013 0.35% 1.42 GB 7.23 min.

4.5 Termination

Given that subproblem termination is based on the µ-criticality conditions (23) and (24), the
closeness of each subproblem solution can be measured by µ. It can be shown that if subproblems
are solved exactly, |f (x (µ)) − f (x∗)| ≤ nµ [11]. The µ-criticality conditions, however, are designed
for a “short-step” algorithm in which one truncated-Newton step should satisfy each subproblem
for sufficiently small µ. To ensure the accuracy of the final solution, final termination is based on
the following two requirements:

λT x

n
≤ ε1, (40)

‖∇x` (x, λ)‖∞
1 + |f (x)| ≤ ε2. (41)

We have found that reasonably accurate solutions are ensured when ε1 = 1.5 × 10−4 and ε2 =
5 × 10−9.

The traditional view in tomographic reconstruction is that a highly accurate solution is unnec-
essary. This view stems in part from the ill-posedness of the problem and the computational cost
of taking a reconstruction to full convergence. From empirical evidence in our studies, the ability
to perform certain imaging tasks such as “cold spot detectability” improves with accuracy of the
solution. Although the termination criteria we propose above may not appear particularly strict,
they are from a tomographic reconstruction perspective.

5 Computational studies

5.1 Size of the problem

Our studies involved two different-sized problems. Raw coincidence data from the scanner can
be binned into either “thick-slice” or “thin-slice” measurement spaces, or both. “Thick-slice”
reconstructions, in which n = 376, 000 and N = 5.35 × 106, require 3.4 minutes for a gradient
evaluation using 10 IBM RISC/6000 SP processors (120 MHz) on a 2.5M-count study. For a
“thin-slice” reconstruction with n = 1.4 × 106 and N = 6.3 × 107 on the same data and processors,
a gradient evaluation requires 6.75 minutes. These properties are summarized in Table 2. The cost
of storing the full n×N system matrix is prohibitive, even for thick-slice reconstructions. Extensive
exploitation of the sparsity and symmetries inherent in the system matrix makes its storage and
retrieval possible [23, 24].

The dominant computational operations of the reconstruction problems are the forward- and
back-transformation operations that underlie EM iterations, gradient evaluations, Hessian-vector
products, and diagonal Hessian calculations. These operations have been implemented in parallel
via a data decomposition strategy that partitions the “measurement-space” vectors y and ŷ across
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Table 3: Summary of thick-slice primal-dual results and comparison with MAP-EM. Extrapolation
was not used, and in all cases ρ = 2.

study f∗ npr nit ncg ngr MAP-EM
A 2,465,770 19 19 110 148 1000
B 2,397,197 23 23 164 210 > 1000
C 2,269,180 22 22 126 170 990
D 2,752,484 20 21 169 211 > 1000
E 2,536,110 26 26 131 183 770
F 3,296,013 23 23 141 187 >1000
G 3,660,344 24 24 127 175 > 1000
average ngr 183

the processors. The “image-space” vectors such as x and λ are replicated over all processors. Our
data decomposition is justifiable under the observation that N >> n. On a data set with 2.5M
counts, at most 47% of the elements of y will be nonzero in the thick-slice case; at most 4% in the
thin-slice case. The dominant computational operations have been implemented in such a way to
exploit sparsity in y and further conserve computation [23].

5.2 Cost metrics

We have devised metrics to measure the cost of an interior point reconstruction. Define the number
of subproblems to be npr, the number of truncated-Newton iterations nit, the number of conjugate
gradient subiterations ncg. The cost of one CG iteration (dominated by the Hessian-vector prod-
uct) is equivalent to the cost of one gradient calculation or EM iteration. One truncated-Newton
iteration requires, in addition to the ncg operations, one diagonal Hessian evaluation plus one for-
ward transformation and one backward transformation. The exact cost of these operations varies
depending on the size of the problem and number of counts, but we shall approximate the cost of
one truncated-Newton iteration to be the equivalent of two gradient calculations beyond the cost
of the conjugate gradients.

Using this approximation, the total cost of unextrapolated interior-point reconstructions can
be measured in units of equivalent number of gradient calculations (or EM iterations):

ngr = 2 · nit + ncg.

Extrapolation requires an additional gradient calculation following the extrapolation in order to
update the gradient vector. With extrapolation we modify the formula to

ngr = npr + 2 · nit + ncg.

5.3 Computational results

We have performed a number of 3-D reconstructions on data acquired from a small animal scanner
and data generated by a Monte Carlo simulation of the same small animal scanner. Reconstructions
of seven datasets were taken to full convergence, as defined by the termination criteria (40) and (41)
with ε1 = 1.5 × 10−4 and ε2 = 5 × 10−9. The various datasets used in our computational studies
represent a fairly diverse sample of the types of scans that might be encountered in practice. The
number of counts in the datasets used in these studies ranged from 850K to 5.1M. The number of
binding constraints at the optimal solution ranged from approximately 20% to 80%.

Our main results are summarized in Tables 3 and 4 for the non-extrapolated and extrapolated
primal-dual cases, respectively. Studies A through D are reconstructions of data acquired from a
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Table 4: Summary of thick-slice extrapolated primal-dual results and comparison with MAP-EM;
in all cases ρ = 2.

study f∗ npr nit ncg ngr MAP-EM
A 2,465,772 17 17 94 145 960
B 2,397,232 16 16 91 139 > 1000
C 2,269,190 17 17 94 145 850
D 2,752,502 14 16 119 165 > 1000
E 2,536,112 20 20 106 166 750
F 3,296,029 18 18 115 169 >1000
G 3,660,384 20 20 100 160 >1000
average ngr 156

Table 5: Summary of thick-slice barrier results and comparison with MAP-EM. Extrapolation was
used on all data sets, and in all cases ρ = 10.

study f∗ npr nit ncg ngr MAP-EM
A 2,465,832 5 28 159 218 880
B 2,397,199 5 29 198 259 > 1000
C 2,269,180 5 29 185 246 990
D 2,752,499 4 25 207 260 > 1000
E 2,536,111 6 40 214 298 780
F 3,296,037 5 36 197 274 >1000
G 3,660,351 6 41 214 300 > 1000
average ngr 265

small animal PET scanner, while studies E through G are reconstructions of Monte Carlo simulated
data. These reconstructions were performed in “thick-slice” mode (376,832 variables) with the
regularization parameter set at γ = 3 × 10−4. In these tables, the rightmost column indicates the
number of DePierro MAP-EM iterations that were required to achieve the value of f∗ in the same
row. (To avoid excessive computation, the function values were only calculated every 10 MAP-
EM iterations, and the final count was rounded down, to favor MAP-EM.) Since the cost of one
gradient evaluation is equivalent to the cost of one EM iteration, the numbers in the columns ngr
and MAP-EM can be compared directly. We find that the primal-dual method consistently reaches
convergence much more rapidly than does MAP-EM.

Another interesting observation can be made in the comparison between Tables 3 and 4. Con-
sider the number of EM iterations required to reach f∗ for study C. In Table 3, the EM algorithm
reached f = 2, 269, 180 in 990 iterations. In Table 4 on the same data set, the EM algorithm
reached f = 2, 269, 190 in 850 iterations. Thus, the EM algorithm took 140 iterations to reduce
the function value by only 10 units near the solution. This is in fact a typical example of the slow
limit behavior of the EM algorithm. In all studies, MAP-EM did not achieve the same convergence
results obtained by the interior-point methods at termination. The Lagrangian gradient norm and
complementary slackness values of the terminated MAP-EM iterates were consistently much higher
than those of the terminated primal-dual solution.

We have also performed these reconstructions using a stabilized logarithmic barrier algorithm
based on the method presented in [44] and specialized to the present reconstruction problem. Many
of the computational features of our logarithmic barrier implementation are identical to our primal-
dual implementation, e.g., truncated Newton, line search, computation of the gradient, Hessian-
vector product, etc. For a more detailed discussion, see [23]. The logarithmic barrier results are
summarized and compared against MAP-EM in Table 5. Termination of the logarithmic barrier
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Figure 2: “Distance” from optimal solution at termination, as measured by difference in objective
function f − f∗ (where f∗ is here defined to be the lowest objective function obtained per study),
versus work required to reach termination, as measured by ngr, the equivalent number of gradient
evaluations. The studies included are those listed in Table 3. PD stands for non-extrapolated
primal-dual, PDX for extrapolated primal-dual.
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Figure 3: Average value of µ at subproblem termination versus average ngr (equivalent number
of gradient evaluations) for the seven studies listed in Table 3. PD stands for non-extrapolated
prmal-dual, PDX for extrapolated primal-dual.

was defined by (41) and
max (λixi)
1 + |f (x)| ≤ 5 × 10−10.

These termination criteria for the logarithmic barrier correspond to roughly the same accuracy as
(40) and (41) do for the primal-dual method. Being a “long-step” method, the logarithmic barrier
gives the user less control over the exact stopping point than does the “short-step” primal-dual. All
of the logarithmic barrier reconstructions in Table 5 used extrapolation. In all logarithmic barrier
reconstructions, µ was reduced by a factor of 10 between subproblems. Table 5 indicates that the
primal barrier method requires on average 70% more gradient calculations than the primal-dual
method on these problems.

The effect of extrapolation is illustrated in Figures 2 and 3. In Figure 2, the equivalent number
of gradient evaluations (ngr) to reach termination is plotted against objective function “distance”
f −f∗, the difference between the function value of the terminated solution and the lowest function
value obtained for that reconstruction. In all seven test cases (those listed in Tables 3–5), the
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Table 6: Summary of thin-slice extrapolated results, including convergence measures and compu-
tational costs to optimal solution.

study γ f ‖∇`‖
1+|f|

max(λixi)
1+|f| npr nit ncg ngr

B 8E-5 7,661,605 8.54E-11 1.77E-11 17 17 68 119
B 3E-5 7,658,720 9.77E-11 1.68E-11 17 17 72 123
B 1E-5 7,657,020 3.71E-10 2.14E-11 17 17 79 130
C 3E-5 5,826,032 9.08E-10 2.67E-11 15 16 56 103
F 3E-5 7,724,731 6.87E-10 7.96E-11 16 16 64 112
F 1E-5 7,721,001 1.29E-9 2.87E-11 14 14 71 113
H 3E-5 3,776,745 1.10E-9 3.89E-11 13 16 63 108
average ngr 115

unextrapolated primal-dual method achieved the lowest objective function value. Thus, f − f∗

is zero for all unextrapolated primal-dual (PD) results but greater than zero for the extrapolated
primal-dual (PDX) and barrier results. The PDX results are clustered in a region of lower ngr than
the PD results. This indicates that extrapolation lowers the computational expense to the solution
at a slight deterioration in the final objective. Compared with the barrier method, either extrapo-
lated or unextrapolated primal-dual produces equivalent or better accuracy with less computation
required.

In Figure 3, the average number of equivalent gradient evaluations at subproblem termination is
plotted against the average value of µ for each subproblem. Both averages (ngr and µ) were taken
from the same seven test cases of Tables 3–5. Compared with either unextrapolated primal-dual
(PD) or extrapolated primal-dual (PDX), the logarithmic barrier is clearly on a slower trajectory.
The PD and PDX trajectories are quite similar until approximately µ = 0.01, at which point the
PD curve “swings out”, while the PDX curve continues to descent log-linearly. This result confirms
that the prediction (extrapolation) step becomes more accurate near the solution, resulting in more
rapid convergence. However, a comparison of the objective functions indicates that the value of
PDX µ is perhaps one step “ahead of itself,” compared with the unextrapolated case.

We have also reconstructed a number of very large-scale “thin-slice” reconstructions involving
1.4 × 106 variables. Table 6 summarizes a number of properties of these extrapolated primal-dual
reconstructions at the converged solution. A smaller group of datasets (the more visually “interest-
ing” studies) were selected for the thin-slice work, and certain reconstructions were repeated with
different values of the prior strength γ. Thin-slice reconstructions seem to require a lower prior
strength than the corresponding thick-slice reconstructions. The most visually pleasing results were
from reconstructions using γ = 1 × 10−5, which is 1/30 the prior strength that was generally found
to be most satisfactory in thick-slice reconstructions. The total amount of work (as measured in
ngr) required to reach termination in Table 6 is also quite pleasing. The number of variables in
a thin-slice reconstruction is approximately 3.7 times the number in thick-slice. The number of
nonzero-valued measurements in thin-slice mode is only marginally greater than in thick-slice mode,
however, since the number of counts is the same in both cases. These thin-slice reconstructions
may thus be better conditioned than their thick-slice counterparts.

6 Conclusion

From the results of the previous Section, it is clear that the primal-dual method converges signif-
icantly faster than the EM algorithm for regularized ML reconstructions in emission tomography.
The results also indicate that the primal-dual method converges faster than the logarithmic barrier
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method. The use of extrapolation in conjunction with the primal-dual method further reduces the
amount of computation required to achieve convergence.

Given that the negative regularized ML objective function that we minimize is convex, approxi-
mately solving the reduced unsymmetric primal-dual Newton equations is appropriate. Symmetriz-
ing the unsymmetric system, while potentially useful for nonconvex problems, would in this case
require solving for 2n variables without avoiding the potential for ill-conditioning. Our stabilization
technique avoids the structural ill-conditioning of the condensed primal-dual matrix, and therefore
solving the reduced system poses no asymptotic difficulty as the barrier parameter approaches zero.
The computational efficiency and relative simplicity of formation of the reduced system of equations
pose such a strong advantage that our choice of primal-dual method almost seems obvious for this
problem.

Since Newton’s method converges quadratically near the solution, for a well-conditioned system
in the limit as µ → 0, one truncated-Newton step per subproblem should yield an increasingly
accurate and well scaled direction to the subproblem solution for µk. As µ is decreased, the
subproblem solutions should become “close” to each other for a convex problem [13]. Yet, the
example in Table 1 illustrates that the direction produced by the early-terminated CG can in fact
become less accurate for smaller µ due to the structured ill-conditioning in M . In practice, we do
not require the accuracy of the test example in Table 1. Our termination conditions are defined
to be near the point on the trajectory where the stabilization approximation becomes accurate
enough to guarantee descent. These termination criteria are quite accurate by the standards of
the tomography community. Thus, although most reconstruction problems are unlikely to be
severely affected by ill-conditioning, the potential for slow convergence near the solution due to ill-
conditioning does exist. Our experience has been that stabilization has been an effective safeguard
against poor performance for small values of the barrier parameter.
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